

Aditya Bajaj
Lina Johnson

ARM Assembly
Code Style Guide

ARM Assembly Code Style Guide

Table of Contents

Table of Contents 1

Introduction 2
Summary 2
Pre-requisites 2

Hardware 2
Software 2

Additional Resources 2

File Structure 3
General Structure 3
File Naming Conventions 3
Preamble Section 4
Comments 4
Data Section 4
Text Section 4
Case Sensitive Rules 5
Variables 5

Global Variables 5
Local Variables 5

Formatting 6
Whitespace 7
Newlines 7
Functions 7
Loops 7
Logic Groupings 7

Memory Allocation 8

Structured Programming 8

1

ARM Assembly Code Style Guide

Introduction

Summary
This documentation serves the purpose guiding those who are developing in ARM assembly to
create clear and consistent code. The reader will be able to reference this documentation to
ensure that their code follows the expected guidelines for the book. Although there may be
variations on how an individual may approach code style, keep in mind that the suggestions in
this guide are composed of best practices found across various organizations, companies, and
experts in this field.

Pre-requisites
In order to properly utilize the information being taught the following dependencies are required.
For detailed information on where to buy bundles, suggested set up, and more; reference
“BuyingPi.pdf” in Module 1.

Hardware
● Raspberry Pi
● 16 GB Micro SD card
● Monitor
● USB keyboard
● USB mouse

Software
● PuTTY and a terminal
● X-Windows (if not using terminal)
● Text Editor

Additional Resources
Helpful resources will be referenced throughout each module. General helpful resources are
included below.

● ARM Assembly Reference Card
http://www.cburch.com/cs/230/arm-ref.pdf

● Download page for Digital Circuit Projects - Second Edition eBook
https://cupola.gettysburg.edu/oer/1/

● Download page for Introduction To MIPS Assembly Language Programming eBook
https://cupola.gettysburg.edu/oer/2/

● Download page for Implementing a One Address CPU in Logisim eBook
https://cupola.gettysburg.edu/oer/3/

● Unix Cheat Sheet
http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/unix_cheatsheet.html

2

http://www.cburch.com/cs/230/arm-ref.pdf
https://cupola.gettysburg.edu/oer/1/
https://cupola.gettysburg.edu/oer/2/
https://cupola.gettysburg.edu/oer/3/
http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/unix_cheatsheet.html

ARM Assembly Code Style Guide

File Structure

General Structure
The following defined style must be followed across all ARM programs to ensure readability and
proper structure.

File Naming Conventions
The file names should be in camelcase starting with a lowercase letter.

Files containing libraries must also include the prefix, “lib”. Doing so makes it clear that the file
uses a library without having to open the file up. A library file is any file that does not contain a
main function and contains two or more global symbols for functions.

Files that contain a main should be suffixed with, “Main” and main should be removed when the
program file is generated.

3

Good Examples
helloWorld.s
toBeOrNotToBe.s
multiplyNumbers.s
addNumbers.s

Bad Example 1 - Starts with uppercase
HelloWorld.s

Bad Example 2 - Starts with numerical value
2beOrNot2Be.s

Bad Example 3 - Snake case and all caps
MULTIPLY_NUMBERS.s

Bad Example 4 - hyphenated and all lowercase
add-numbers.s

Good Example
libConversion.s

Bad Example - not clear that it contains libraries
conversion.s

Good Example
calculateHeightMain.s

Bad Example 3 - not clear where main lives
calculateHeight.s

ARM Assembly Code Style Guide

Preamble Section
Every program written must begin with a preamble at the top of the program that states the name
of the program, the purpose of the program, the author of the program, functions, and the date
when it was written. All functions must be ordered in alphabetical order and include a short
description of its purpose. Any inputs and outputs should also be defined in the preamble. It
should adhere to the following format:

Comments
All comments in the code should follow the same indentation guideline that the code follows.
Comments that pertain to a nested component should follow the same white space as the
component it references.
Single lines can be commented after the code using the “//” characters. However only lines that
are unclear should be commented. Line comments should be used very sparingly and are not the
preferred option.

Data Section
Following the end of the .text section, the .data section must begin. All the variables that were
used in the .text section should be declared in the .data section. If there are multiple .text
sections, then each section must be followed by a .data section where the respective variables are
declared. Proper indentation & comments should be followed for the .data section.

Text Section
All executable assembly language instructions must be defined in the .text section. Proper
indentation & comments should be followed for the .text section.

4

Program Name: helloWorld.s
Author: John Doe
Date: 11/11/2020
Purpose: To print out a hello world message using a
system call (svc) from ARM assembly
Functions: (when applicable)
Inputs: (when applicable)
Outputs: (when applicable)

.data
 # Prompts the user to enter his/her name
 .namePrompt: .asciz “Enter your name: ”

 # Prompts the user to enter his/her age
 .agePrompt: .asciz “Enter your age: ”

ARM Assembly Code Style Guide

Case Sensitive Rules
Instructions should be all uppercase. Registers should be all lowercase. Functions should follow
the same naming convention rules as variables. All naming conventions should be clear and
indicative of the information that is associated with it. Functions should be named in a clear
human readable way that is short yet descriptive.

Variables

Global Variables
All global variables need to be declared at the beginning of the file before. Global variables
should be in camelcase and ordered in alphabetical and numerical order. The camelcase rule
applies for static and static external variables. For constant variables, use all uppercase characters
and snakecase (e.g. underscores between words).

Local Variables
All local variables should be defined in the .data section. The variables should have meaningful
names and should be in camelcase. Make sure to order variables in alphabetical and numerical
order. Any variables with an ephemeral purpose should use non-preserved registers. If any
register other than the non preserved registers are used (e.g. r4-r12), the name of a variable
should be associated with them.

5

.text

.global main

 main:
 # Prompts user for an input
 LDR r0, =userPrompt
 BL printf

Good Constant Variable Example
INCHES_IN_A_FOOT

Good Examples
tempInFahrenheit
measurementInFeet
input

Bad Examples - trivial variable names
.global i
LDR r0 =w

Bad Examples - non-descriptive
.global doAction
LDR r0 =measurement

ARM Assembly Code Style Guide

Formatting
Instructions should be all uppercase. Registers should be all lowercase. Functions should also be
all lowercase. Single characters should be enclosed with single quotes. Strings should be
enclosed with double quotes. The following code example demonstrates proper formatting.
Filename: fahrenheitToCelsius.s

6

Program Name: fahrenheitToCelcius.s
Author: Charles Kann
Date: 11/01/2020
Purpose: Calculates a temperature from fahrenheit to celsius.
Inputs:
- userInput: Temperature in celsius user wants converted
Outputs:
- convertedMessage: Converted temperature from C to F

.text
.global main

main:
 # Save return to OS on stack
 SUB sp, sp, #4
 STR lr, [sp, #0]

 # Prompt user for input with a message
 LDR r0, =temperaturePrompt
 BL PRINTF

 # Takes user input (SCANF)
 LDR r0, =userInput
 SUB sp, sp, #4
 MOV r1, sp
 BL SCANF
 LDR r0, [sp, #0]
 ADD sp, sp, #4

 # Convert
 BL fahrenheitToCelcius
 MOV r1, r0

 # Print the converted value as a message to the user
 LDR r0, =convertedMessage
 BL PRINTF

 # Return to the OS
 LDR lr, [sp, #0]
 ADD sp, sp, #4
 MOD pc, lr

.data
 # Tells the user what the temperature conversion is
 convertedMessage: .asciz "\nThe temperature in C is %d\n"
 # Takes the user input for conversion calculation
 userInput: .asciz "%d"
 # Prompts the user to enter in the temperature in fahrenheit
 temperaturePrompt: .asciz "Enter the temperature in F you want in C: \n"

ARM Assembly Code Style Guide

Whitespace
Tab characters should not be used at any time. The indentation style that should be used is 4
spaces. Make sure to update your text editors to replace any tab characters with 4 spaces instead.

Newlines
There should be a new line after every instruction. There should also be an additional new line
after each segment of the assembly program to delineate the various sections clearly and allow
for more easily readable code. There should never be more than a single blank line between
logical groupings at any point in the program with the exception of a new page character.

Functions
All functions require clear documentation that specifies the functionality of the function as well
as detailing the data manipulation (i.e. register usage and expectations). It should also document
any potential errors and dependencies. Alterations such as non-local variable change or print
statements must be called out. For functions that are complex, include pseudo code to explain
how they work. Functions should include a clear “END OF” comment to clearly indicate the end
of the function. Functions should adhere to the following format:

Loops
Loops should be implemented by specifying a start of loop label and an end of loop label that
encapsulates the logic within. A comment is required for the initialization, iteration check, next
item, and the end.

Logic Groupings
Logical checks should be grouped and have an empty new line after the group to allow for more
readable code. Each logical grouping (e.g. if-elseif-else, etc.) should also include a brief
comment above the first executable line to indicate the group. For non-trivial groupings the
comments should be more detailed in explaining what is being done in the group.

7

Purpose: To print out a hello world message using a
system call (svc) from ARM assembly
Inputs: (r0, r1, r2, or r3 are allowed)
Outputs: (only r0 and r1 are allowed)
Errors: (when applicable, be descriptive)
Alterations: (when applicable)
Pseudo Code: (when applicable)

... <function code here> ...

END OF <function_Name>

ARM Assembly Code Style Guide

Memory Allocation
All parameters for a function (r0, r1, r2, and/or r3) that contain saved values that are intended to
be used later in the function should be saved to the stack or to a preserved register.
If stack space is allocated and not used to save a register in the push section of the function the
purpose of this stack variable should be well documented.

Structured Programming
It is important that no code should ever branch out of a program block. Any branching done
must be to a place in the current program block. There are sometimes exceptions (e.g. the branch
is at the end of a loop structure), however branches should always be forward in the code.

8

